Draught Beer Quality Workshop: Calculating Proper Balance and Pours

BA Draught Beer Quality Manual

Jaime Jurado

Vice President
Ennoble Beverages, Inc

https://www.brewersassociation.org/resource-hub/draught-beer/

What was once world-class...

...has evolved

Are you using 60\%CO2/40\%N2 to dispense your beer? Chances are some if not all of your beers are slowly going flat and potentially falling out of the brewer's desired carbonation range.

Recently, the Brewer Association Technical Committee endorsed a beer industry-wide guideline that changes the default dispense gas blend from $60 \% \mathrm{CO} 2$ to $70 \% \mathrm{CO} 2$ for any systems that need CO2-rich blends (see back of page for criteria). Extensive market research indicates that when used as the sole gas blend, 70% CO2 keeps more beers within their respective carbonation specifications.

In a near-constant effort to maintain high-quality draught beer at retail, brewers have long battled gas systems which

When all the elements are in balance, the beer will stay prop erly carbonated. The problem is that the average draught system is pouring beers with differing levels of carbonation with the three other elements remaining constant, this causes many beers to become flat

The solution lies in making adjustments to either of the two elements we can readily adjust: CO2 percentage, and applied pressure. Let's look at these individually.

CO2 Percentage Adjustment

The adjustment of CO2 percentages for different beers has historically been difficult if not impossible. Gas blending pan els usually have only one CO 2 -rich blend available, with dua

The BA offers a 'One-Pager'..

New Guidelines For the Use of Blended Gas for Draught Beer Dispense:

Prepared by the Brewers Association
Technical Committee Draught Beer Quality Working Group
www.draughtquality.org

BA

Excel Perfect Blend Program

BREWERS
ASSOCIATION

Easy Blend Calclator		Easy Blend Calclator	
Enter these values:		Enter these values:	
Temperature (${ }^{\circ} \mathrm{F}$)	38	Temperature (${ }^{\circ} \mathrm{F}$)	40
Pressure (psig)	18	Pressure (psig)	22
CO_{2} Content (vols/vol)	2.5	CO_{2} Content (vols/vol)	2.7
Perfect CO2\%	79\%	Perfect CO2 \%	79\%

Easy Blend Calclator	
Enter these values:	
Temperature $\left({ }^{\circ} \mathrm{F}\right)$	36
Pressure (psig)	26
CO_{2} Content $($ vols/vol)	2.7
Perfect $\mathrm{CO}_{2} \%$	66%

Our (free) State of Art Resource

- BA Draught Beer Quality Sub-Committee
- We'll use our unique and practical 'textbook' in guiding today's online presentation! Our framework is focused on attaining BALANCE to dispense perfect beer...
- Temperature
- Pressure
- Resistance \& Components
- Our options!

Social isolation in nature

Carbonation (volumes CO_{2})	2.3	2.4	2.5	2.6	2.7	2.8	2.9
Applied CO_{2} (psig)	9.2	10.3	11.3	12.4	13.5	14.5	15.6
$3 / 16^{\prime \prime}$ Vinyl beer line length	$3^{\prime} 3^{\prime \prime}$	$3^{\prime} 5^{\prime \prime}$	$3^{\prime} 9^{\prime \prime}$	$4^{\prime} 2^{\prime \prime}$	$4^{\prime} 6^{\prime \prime}$	$4^{\prime} 10^{\prime \prime}$	$5^{\prime} 7^{\prime \prime}$

Diverse tools are in the BA book for many situations

Today's focus is on longer systems and how we realize optimal dispense...

...including
Calculations with examples

Ken Smith \& Bridget Gauntner did the
Our goal.... Prep work yesterday in their CBC talk!

Remember those times in learning where your Instructor/Professor illuminated solutions using approaches framed differently from the text?

No time to
 Spoon-Feed You

1. TEMPERATURE CHALLENGES REVIEW

1/2-bbl keg (36 F): if delivery van is at 90 deg F, rise in temp of 20 deg F in 2 hours. A keg at 50 deg F delivered into a 36 deg F cold room requires 3 days to equilibrate.

- Consistent Quality
- Good Carbonation
- Palate - no off tastes
- Good head formation
- Lasting head retention

Gases Increase Solubility With Lowering Temperature

FOR EXAMPLE:

at $60^{\circ} \mathrm{F}-1$ gallon of CO_{2} gas at atmospheric pressure will dissolve in 1 gallon of beer.
at $32^{\circ} \mathrm{F}-1.71$ gallons of CO_{2} gas at atmospheric pressure will dissolve in 1 gallon of beer.

If we have 1 gallon of CO_{2} in 1 gallon of beer, we say we have 1 volume of CO .

Beer now has 1 gallon of CO_{2} dissolved in it.
The equilibrium condition is 1 volume CO 2 in solution at 0 PSI and $60^{\circ} \mathrm{F}$.

Add more gas (1.5 vols): CO_{2} is now being restrained in solution by 22 PSI pressure.

The new equilibrium condition is $1+1.5$ volume $=2.5$ volume CO_{2} at 22 PSI and $60^{\circ} \mathrm{F}$.

Note: Allowing greater pressure on beer allows it to absorb more CO2... and we'll see why this is a problem soon!

2. "BALANCE" is Differential Pressure Management in beer line

'Pressures produced when penguins pooh - calculations on avian defecation" by Victor Benno Meyer-Rochow and Jozsef Gal

$$
z_{1}+p_{1} / \rho g+v_{1}^{2} / 2 g=z_{2}+p_{2} / \rho g+v_{2}^{2} / 2 g
$$

Fig. 1 Position of model penguin during defaecation and physical parameters used to calculate rectal pressure necessary to expel faecal material over a distance of 40 cm

Hagen-Poiseuille equation: ...a small increase in the internal diameter of the beer line yields a significant increase in flow rate of beer

TABLE 4.1. COMMON MATERIALS AND DIAMETERS USED FOR BEER LINE AND THEIR DYNAMIC RESISTANCE VALUES

Type	Size	Resistance (lb./f.)*	Volume (f. oz./ft.)
Vinyl/flexible	3/16" ID	3.00	1/6
Vinyl/flexible	$1 / 4$ ID	0.85	1/3
Vinyl/flexible	5/16" ID	0.40	1/2
Vinyl/foxihle	3/8" ID	0.20	3/4
Vinyl/flexible	$1 / 22^{\prime \prime}$ ID	0.025	11/3
Eanrier	$\rightarrow 1 / 4 \mathrm{ILD}$	0.30	1/3
Barrier	5/16" ID	0.10	1/2
Berrier	3/8" ID	0.06	3/4
Stainlose	$\rightarrow 1 / 4^{\prime \prime} O D$	1.20	1/6
Stainless	$5 / 160^{\prime \prime}$ OD	0.30	1/3
Stainlese	3/8"OD	0.12	1/2

3. RESISTANCE

DRAUGHT SYSTEM BALANCE

When applied pressure equals system resistance, a draught system will pour clear-flowing beer at the rate of $1 \mathrm{gal} . / \mathrm{min}$., or approximately 2 f . oz. $/ \mathrm{sec}$.

Think about our little penguin....

No time to Spoon-Feed You!

TABLE 4.1. COMMON MATERIALS AND DIAMETERS USED FOR BEER LINE AND THEIR DYNAMIC RESISTANCE VALUES

TABLE 3.2. DETERMINATION OF PURE CO ${ }_{2}$ EQUILIBRIUM GAUGE PRESSURE (PSIG) FOR GIVEN VOLUMES OF CO_{2} AND TEMPERATURE

	Volumes of CO_{2}										
Temp. (${ }^{\circ} \mathrm{F}$)	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1
33	5.0	6.0	6.9	7.9	8.8	9.8	10.7	11.7	12.6	13.6	14.5
34	5.2	6.2	7.2	8.1	9.1	10.1	11.1	12.0	13.0	14.0	15.0
35	5.6	6.6	7.6	8.6	9.7	10.7	11.7	12.7	13.7	14.8	15.8
36	6.1	7.1	8.2	9.2	10.2	11.3	12.3	13.4	14.4	15.5	16.5
37	6.6	7.6	8.7	9.8	10.8	11.9	12.9	14.0	15.1	16.1	17.2
38	70	81	97	103	11.3	12.4	13.5	14.5	15.6	16.7	17.8
39	7.6	8.7	9.8	10.8	11.9	13.0	14.1	15.2	16.3	17.4	18.5
40	8.0	9.1	10.2	11.3	12.4	13.5	14.6	15.7	16.8	17.9	19.0
41	8.3	9.4	10.6	11.7	12.8	13.9	15.1	16.2	17.3	18.4	19.5
42	8.8	9.9	11.0	12.2	13.3	14.4	15.6	16.7	17.8	19.0	20.1

Source: Data from Methods of Analysis, 5ith ed. (Milwoukee, WI. American Society of Brewing Chemists, 1949
Note: Volues ossume seo-level alititude. Add I psifor every 2000 f . above sea level
Table 3.2, page 38
"Atmospheric pressure decreases by about 1 psi per 2000 feet gained in elevation. To account for this loss of pressure, add 1 psi to the regulator setting for every 2000 feet gained in elevation"--page 18

TABLE 1.2. ABSOLUTE PRESSURE DECREASES AS ELEVATION INCREASES WHEN DISPENSING PRESSURE IS HELD AT THE SAME PSIG.

Elovation (ft, obove sea level)	Atmosphoric pressuro (psi)	Dtepensing prossuro (psig)	Absoluto proseuro (psio)
0	14.7	15	29.7
2,000	13.7	15	28.7
4,000	12.7	15	27.7
5,000	12.2	15	27.2
$\mathbf{8 , 0 0 0}$	10.7	15	25.7
10,000	9.7	15	24.7

TABLE 1.3. DISPENSING PRESSURE MUST BE INCREASED AS ELEVATION INCREASES TO MAINTAIN ABSOLUTE PRESSURE, PSIA.

Elevation (ft. above sea level)	Atmospheric pressure (psi)	Dispensing pressure (psig)	Absolute pressure (psia)
$\mathbf{0}$	14.7	15	29.7
$\mathbf{2 , 0 0 0}$	13.7	16	29.7
$\mathbf{4 , 0 0 0}$	12.7	17	29.7
5,000	12.2	17.5	29.7
$\mathbf{8 , 0 0 0}$	10.7	19	29.7
$\mathbf{1 0 , 0 0 0}$	9.7	20	29.7

See pages 28 \&29
Discussion on
Absolute Pressure

MIXED GAS....

Nitrogen is sparingly soluble

Provides motive force without increasing carbonation

Appendix C:

CARBONATION, BLENDED GAS, GAS LAWS, AND PARTIAL PRESSURES

- $\mathrm{CO}_{2}=100 \% \mathrm{CO}_{2}$
- ...so 10 psig applied = 10 psig CO2
- $40 \% \mathrm{~N}_{2}+60 \% \mathrm{CO}_{2}=60 \% \mathrm{CO}_{2}$
- ...so 10 psig applied $=6$ psig CO2

Determination of needed Mixed Gas Composition: calculation

1.Determine equilibrium absolute pressure ${ }^{\text {a }}$ to maintain proper level of CO_{2}.

2.Determine the total absolute gas pressure to move the beer to the tap.
3.Divide the equilibrium absolute CO_{2} pressure (Chart) by the total absolute gas pressure (Penguin) to obtain the CO_{2} portion of the gas.
${ }^{\text {a }}$ absolute pressure $=$ gauge pressure + atmospheric pressure (i.e. 14.7 psi @ sea level; 12.1 psi in Denver; 9.7 psi @ 10,000 ft)

Examples on Pages 41 and 42

Example 1... our 2.5 vol ale at 39 deg F Absolute pressure consideration: SEA LEVEL
$(11.9 \mathrm{psig}+14.7 \mathrm{psig}) /(17 \mathrm{psig}+14.7 \mathrm{psig})=$
$84 \% \mathrm{CO}_{2}$, and 16% nitrogen...

NOT 11.9/17 = 70 \% plus 30% !

TABLE 3.2. DETERMINATION OF PURE CO_{2} EQUILI VOLUMES OF CO_{2} AND TEMPERATURE						RIUM GAUGE PRESSURE (PSIG) FOR GIVEN					
						Volumes of CO_{2}					
Tamp. (${ }^{\circ} \mathrm{F}$)	2.1	2.2	2.3	2.4	2.	2.6	2.7	2.8	2.9	3.0	3.1
33	5.0	6.0	6.9	7.9	8.1	9.8	10.7	11.7	12.6	13.6	14.5
34	5.2	6.2	7.2	8.1	9.1	10.1	11.1	12.0	13.0	14.0	15.0
35	5.6	6.6	7.6	8.6	9.7	10.7	11.7	12.7	13.7	14.8	15.8
36	6.1	7.1	8.2	9.2	10.	11.3	12.3	13.4	14.4	15.5	16.5
37	6.6	7.6	8.7	9.8	10.	11.9	12.9	14.0	15.1	16.1	17.2
38	7.0	8.1	9.2	10.3	11.	12.4	13.5	14.5	15.6	16.7	17.8
39	7.6	8.7	9.8	10.8	11.9	-			\%		
40	8.0	9.1	10.2	11.3	12.4	13.5	14.6	15.7	16.8	17.9	19.0

Example 1

...our 2.5 vol ale at 39 deg F

Absolute pressure consideration: DENVER

(11.9 psig+2.5 psig+14.7 psig) / (17 psig+14.7 psig)

- Page 18
"jumper" resistance 3 ft . long, 1/4" I.D.

Example 2

Beer at 39 deg F; 2.65 voll CO

 36 in of $1 / 4$ in winuli line $+2.543 / 1 / 6$ vimyl ${ }^{*} *$$+20 \mathrm{ft} 1 / 4$ ima. bannien ${ }^{\text {was* }}$ beer lime

Coupler: 1 psig
Faucet/shank: 1 psig

Albsolute pressure consideration:

Beer at 39 deg Fr in keg... 2.65 vol CO_{2}

TABLE 3.2. DETERMINATION OF PURE CO ${ }_{2}$ EQUILIBRIUM GAI:GE PRESSURE (PSIG) FOR GIVEN VOLUMES OF CO_{2} AND TEMPERATURE

	Volumes of										
Temp. (${ }^{\circ} \mathrm{F}$)	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1
33	5.0	6.0	6.9	7.9	8.8	9.8	10.7	11.7	12.6	13.6	14.5
34	5.2	6.2	7.2	8.1	9.1	10.1	11.1	12.0	13.0	14.0	15.0
35	5.6	6.6	7.6	8.6	9.7	10.7	11.7	12.7	13.7	14.8	15.8
36	6.1	7.1	8.2	9.2	10.2	11.3	12.3	13.4	14.4	15.5	16.5
37	6.6	7.6	8.7	9.8	10.8	11.9	12.9	14.0	15.1	16.1	17.2
38	7.0	8.1	9.2	10.3	11.3	12.4	13.5	14.5	15.6	16.7	17.8
39	7.6	8.7	9.8	10.8	11.9	13.0	14.1	15.2	16.3	17.4	18.5
40	8.0	9.1	10.2	11.3	12.4	13.5	14.6	15.7	16.8	17.9	19.0
41	8.3	9.4	10.6	11.7	12.8	13.9	15.1	16.2	17.3	18.4	19.5
42	8.8	9.9	11.0	12.2	13.3	14.4	15.6	16.7	17.8	19.0	20.1

13.5 psig by interpolation

Source: Data from Methods of Analysis, 5 th ed. (Milwoukee, W1. American Society of Brewing Chemists, 1949)
Note: Values assume sea-level alitude. Add 1 psiffor every 2000 it. above sea level.

Albsolute pressure consideration:

 36 in of $1 / 4$ in winyl*line $+2 f f^{2} 3 / 16$ vinyl ${ }^{* * *}+20 \mathrm{ft}$ of $1 / 4 \mathrm{in}$. bawrier*** beer lince.

Resistance in dispense:

TABLE 4.1. COMMON MATERIALS AND DIAMETERS USED FOR BEER LINE AND THEIR DYNAMIC RESISTANCE VALUES
$=83 \% \mathrm{CO}_{\text {, }}$ and 17% nitrogen...
NOT 13.5/19.1 = 71% plus 29% !

jumper	$*(3 \mathrm{ft})(0.85 \mathrm{psi} / \mathrm{ft})=2.55 \mathrm{j}$ sig
choker	$* *(2 \mathrm{ft})(3 \mathrm{psi} / \mathrm{ft})=6.0$
trunk	$* * *(20 \mathrm{ft})(0.3 \mathrm{psi} / \mathrm{ft})=6.0 \mathrm{psig}$

$$
=14.55 \mathrm{psig}
$$

GAS BLENDERS

On-site nitrogen generators

Figure 4.8. Beer pumps and FOBs in walk-in cooler.
\#CraftBrewersCon

QUESTION FROM BRIDGET \& KEN TALK....

"If the serving lines rise 6 feet above the keg, travel to the tap location, and then drop 6 feet to the taps, is the static resistance zero?
All of the line is identical all the way to the taps and the trunk line is maintained at the same temp as the cold room and glycol chilled all the way to the taps. distance is 33 feet."

Thank you \& hoping everyone progresses back to pre-covid-19 business ASAP!

